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LETTER TO THE EDITOR 

Integrals of motion for the Lorenz system 

M KuS 
Institute of Theoretical Physics, Warsaw University, Hoia 69, 00-681 Warsaw, Poland 

Received 30 September 1983 

Abstract. Three new cases when the Lorenz system has (time dependent) integrals of 
motion are given. 

The integrability of the Lorenz system (Lorenz 1963) 

dxldt  = UY - UX, dyldt  = -y - xz T rx, dz /d t=xz-bz  (1) 

was recently investigated in connection with the analytic properties of its solutions 
(Segur 1980, Tabor and Weiss 1981). Demanding the Painlev6 property of the solutions 
(Ablowitz et a1 1980), it is possible to identify the cases when (1) has one or more 
integrals of motion and is (at least partially) integrable (Segur 1980, Tabor and Weiss 
1981). In addition to the linear case U = 0 system, (1) is integrable for (T = f, b = 1, 
r = 0 (in this case it has two integrals of motion) and has one integral of motion for 
U = 1, b = 2, r = 6 and U = f ,  b = 0, r arbitrary. On the other hand two other cases are 
known, not related to the Painlev6 property, when the integrals of motion exist (Segur 
1980, Tabor and Weiss 1981, Steeb 1982): b = 1, r = O ,  U arbitrary and b = 20; r 
arbitrary. Tabor and Weiss tried to relate these cases to other analytic properties of 
solutions and made a conjecture about other possible cases for which the integrals of 
motion exist. 

In this Letter I give all the values of the parameters (T, b and r for which system 
(1) has the integral of motion of the form (cf Steeb 1982) 

F(x,  y, 2, t )  = W(x, Y, z )  exp(-At) (2) 

where W(x, y ,  z )  is the polynomial of order less than five: 

It can be observed that the constant A must be equal to 

A = khl + 1h2+ mA,, k + I + ~tl s s, k, I ,m=O,1 ,2  , . . .  (4) 

where A I ,  A 2 ,  h3 are the eigenvalues of the version of (1) which is linearised around 

Indeed, using the method of Carleman embedding (Steeb and Wilhelm 1980, 
(070,O). 

Andrade and Rauh 1981), the Lorenz system can be rewritten in the form 

dpldt  = Mp ( 5 )  
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where p is the infinite-dimensional vector built up of the quantities p l k m = x k y ' z m  

arranged in the following manner (Andrade and Rauh 1981). For a given n we build 
the vector (pnl, pn2,.  . . , p n K ( , , ) ) ,  ~ ( n )  = f( n + I)( n +2) consisting of all plmk with 
1 + k + m = n. This gives the correspondence PImk + pns, 1 6 s 6 K (n). Now p = 
(p l l ,  p12, ~ 1 3 , .  . . , pnl, pn2 , .  . . pnK( , , ) ,  . . .)T. According to Steeb and Wilhelm (1980) 
and Andrade and Rauh (1981) matrix M has a block structure: 

j-D1 ivl o 0. . .1  
0 D2 N2 O . . .  
0 0 0 3  N3 . . .  

L :  : : J  
where D, (s  = 1,2 ,3 ,  . . .) are K ( s )  x K ( s )  matrices with the eigenvalues given by the 
formula (4). 

From (2) and (3) we have 

F(X, y, 2, t )  = 1 A k l m P k l m  exp(-At) = 1 A k r p k r  exp(-At)* ( 6) 
k + l + m r s  k = l ,  ..., s 

r = l ,  ..., K ( s )  

Differentiating, using (6) truncated to the dimension K (1) + K (2) + . . . + K (s) and 
equating to zero the coefficients of different p k ,  we arrive at 

A(M(,)-A)=O (7) 

where M,,) is the truncated matrix and A = ( A l l ,  A12, A13,. . . , Asl , .  . . , ASK(,)).  
Equation ( 7 )  has non-zero solutions only when A is an eigenvalue of i.e. A = 
kh + 1A2 + mA 3, k + 1 + m s s. 

Certainly (4) is only a necessary condition because, in addition to (7), we have the 
extra equations for Aklm obtained by equating to zero the coefficients in 
(d/dt)F(x, y, 2, t )  of the terms containing p k l m  with k + 1 + m = s + 1. 

For s = 4 we obtain the following cases for which the equations for Aklm have 
non-zero solutions and the integrals of motion exist: 

(1) b = 2u, r arbitrary, F = ( x2 - 2az)  exp( 2at)  

(3) b = l ,  r = O ,  (+arbitrary, F=(y2+z2)exp(2 t )  
(4) b = 4, cr = 1, r arbitrary, F = (4( 1 - r )z  + rx2+ y2 - 2xy + x2z -$x4) exp(4t) 
( 5 )  b = l ,  a = l ,  r arbitrary, F=(-rx2+y2+z2)exp(2t)  
(6) b = 6 ~ -  2, 

(2) b=O, a=:, r arbitrary, F=(-rx2+fy2+$xy+x2z--  3 4  4x ) exp(%) 

r = 20 - 1, F = {[ ( 2 ~  - 1)2/ U ] X '  + y2 - ( 4 ~  - 2) XY + X *  2 - 
(1/4cr)x4} exp(4crt). 

Cases ( l ) ,  (2) and (3) are known in the literature (Segur 1980, Tabor and Weiss 1981, 
Steeb 1982), whereas the remaining three seem to be new ones. It is worth stressing 
that none of the integrals (41, (5) and (6) is connected with the conjectures given by 
Tabor and Weiss based on the analytic properties of solutions. 
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